An exotic Deligne-Langlands correspondence for symplectic groups

نویسنده

  • Syu Kato
چکیده

Let G = Sp(2n,C) be a complex symplectic group. We introduce a G× (C)-variety Nl, which we call the l-exotic nilpotent cone. Then, we realize the Hecke algebra H of type C (1) n with three parameters via equivariant algebraic K-theory in terms of the geometry of N2. This enables us to establish a Deligne-Langlands type classification of simple H-modules under a mild assumption on parameters. As applications, we present a character formula and multiplicity formulas of H-modules. Table of

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An exotic Deligne-Langlands correspondence for symplectic group

Let G = Sp(2n,C) be a complex symplectic group. In the companion paper [math.AG/0601154], we introduced a (G × C × C)-variety N, which we call the exotic nilpotent cone. In this paper, we realize the Hecke algebra H of type C n with unequal parameters via equivariant algebraic K-theory in terms of the geometry of N. This enables us to establish a Deligne-Langlands type classification of “non-cr...

متن کامل

An exotic Springer correspondence for symplectic groups

Let G be a complex symplectic group. In [K1], we singled out the nilpotent cone N of some reducible G-module, which we call the (1-) exotic nilpotent cone. In this paper, we study the set of G-orbits of the variety N. It turns out that the variety N gives a variant of the Springer correspondence for Weyl groups of type C, but shares a similar flavor with that of type A case. (I.e. there appears...

متن کامل

Deligne–lusztig Constructions for Division Algebras and the Local Langlands Correspondence, Ii

In 1979, Lusztig proposed a cohomological construction of supercuspidal representations of reductive p-adic groups, analogous to Deligne–Lusztig theory for finite reductive groups. In this paper we establish a new instance of Lusztig’s program. Precisely, let X be the Deligne–Lusztig (ind-pro-)scheme associated to a division algebra D over a non-Archimedean local field K of positive characteris...

متن کامل

Deligne-lusztig Constructions for Division Algebras and the Local Langlands Correspondence

Let K be a local non-Archimedean field of positive characteristic and let L be the degree-n unramified extension of K. Let θ be a smooth character of L× such that for each nontrivial γ ∈ Gal(L/K), θ and θ/θ have the same level. Via the local Langlands and Jacquet-Langlands correspondences, θ corresponds to an irreducible representation ρθ of D×, where D is the central division algebra over K wi...

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009